
Assignment

Logic Synthesis and Optimization

Lecturer:

Prof. Zhufei Chu, mailto:chuzhufei@nbu.edu.cn

Drafted by:

Prof. Zhufei Chu

Jingren Wang, mailto:jingrenwangcyber@gmail.com

mailto:chuzhufei@nbu.edu.cn
mailto:jingrenwangcyber@gmail.com


Note

• This assignment left a few lines of blank after each problem, but it might not be enough space
for the answer and it is recommended to write on a separate sheet.

• You could reference open source projects to finish but answer should be written with clearly
illustration.

• Example cases can be found at EPFL combinational benchmark Amarù et al. (2015).

• Referenced thesis in the assignment may contain SOTA research, but do not spend too much
time on recommended thesis unless you finish the assignment first.

• For those who have no background in logic synthesis, finish reading chapter 6 of Wang et al.
(2009) will be a good start before starting this assignment.



1 Introduction

Have a clear overview of the whole design flow helps in comprehending what happens under the
hood and the reason why each step is needed.

1.1 Concepts

Some basic concepts or abbreviations you should know even after the introduction. Always check
the concepts of the core idea in this course, it helps you understand in general.

Problem 1

(a) What are the following terms abbreviated for:
EDA
VLSI
FPGA

(b) Draw a whole design-flow flow chart, try to draw it as detailed as possible.
Check Figure 1.1 in Yosys manual Wolf (2024), compare with what you have drawn.

(c) Can you map the idea to the language compiler?

1.2 Explore

Explore the active research, have your own way of finding basic information will help you solve
problems by yourself, always try to find solutions by yourself, note that there is a very high possiblity
that there are prople already asked or illustrated what you want to know on the internet.

Problem 2

(a) Do you know any of the active open source project in EDA area?

(b) Do you know where and how to efficiently find the related research reference? Try to
search for key words Logic Synthesis, Synthesis, EDA, etc., see which conferences does
the research always occur?

2



2 Representations of Logic Functions

2.1 Truth table

Truth table(TT) is essential in logic synthesis, pay good attention even if you think this is simple and
easy to understand. Exact simulation is heavily used in logic synthesis tool ABC and mockturtle,
you will see what happens behind the simulation method after solving the following questions.

2.1.1 Direct view

This section gives a preview of TT, every answer should draw by hand, literal by literal, step by
step.

Problem 3: TT related

(a) What is MSB abbreviated for under the context of endianness? What is Big-
endian/Small-endian?

(b) Write down a full truth table for a 4 variable boolean function(complete boolean func-
tion), how many different combinations of the elementary variables could you list here?
And what about the n variables? How many input combination can you get?

(c) What you write above is the all possibilities of the elementary variables combination,
from a function perspective, how many different functions could you produce under
these combination? And why?

(d) Can you show an example of an incomplete Boolean function in TT? If so, can you try
to simplify and show a better representation of this specific function in TT? If so, can
you related the simplification to the don’t care concept?

2.1.2 Coding Practice

After finishing writing, look what you have written, how do you write it? Is there any pattern
on the full list? Write down the pattern you see, and if you are going to implement this TT in
C/C++, what would you do? Can you find a way to optimize your implementation so that the TT
could take as little memory as possible?

2.2 SOP/DNF & POS/CNF

These concepts are easy but vital in later Boolean optimization. It is better to compare and
remember, since these two concepts are contrary.

3



Problem 4: Expression

(a) Write down the De Morgan’s law.

(b) What is the concept of literal/clause under the Boolean context? Give an example.

(c) What are SOP/DNF & POS/CNF abbreviated for?

(d) As we can see above, TT is canonical; now, try to give a boolean function f, and prove
that the SOP representation is not canonical.

(e) Give an example and illustrate the SOP in the cubes context.

(f) What is an implicant/clause?

(g) What is a prime implicant/prime clause?

(h) Give the definition of disjunctive prime form/conjunctive prime form.

(i) From proposition logic(PL) perspective, there is also a normal called NNF(Negation
normal form), if you encounter with PL formulae in the future, you will need NNF to
convert it to DNF or CNF, check Section 1.6 of Bradley and Manna (2007) if you are
interested.

(j) When we are dealing with combinational problem, we usually transform the problem
into CNF format. Give the definition of Tseitin transformation in your own words and
consider the following propositional logic Biere et al. (2009):

(a → (c ∧ d)) ∨ (b → (c ∧ e))

Try to use Tseitin Transformation to encode it.

2.2.1 Explore

Problem 5: Expression

(a) From proposition logic(PL) perspective, there’s also a normal called NNF(Negation
normal form), if you encounter with PL formulae in the future, you’ll need NNF to
convert it to DNF or CNF, check section 1.6 of Bradley and Manna (2007) if you are
interested.

2.3 CNF & SAT solver

Most of the cases and example are from Biere et al. (2009), strongly recommend to read the book
before you start working on the problem.

4



2.3.1 SAT Basics

SAT solver could be integrated into logic synthesis tool to power the optimization. Know the basic
concepts under the hood will help with a good use.

Problem 6: SAT Basics

(1) What is ”satisfiable” under the context of boolean function?

(2) Explain why use CNF in SAT? Give an problem example that SAT can solve.

(3) 2-SAT and 3-SAT, which one is P and which one is NP-complete?

(4) SAT is optimization problem or decision problem? Can you illustrate the difference
between optimization problem and decision problem?

• This question belongs to complexity classes, if you are not familiar, check 4.2.2.1
in Wang et al. (2009).

(5) What is 3-CNF? Give an example. Think if it is possible to convert any CNF to 3-CNF.
Convert the example you gave to 3-CNF.

• This question helps understand the concept of 2.2.3 Transformation from CNF to
3-CNF in Biere et al. (2009).

(6) Given a set of varibles v1 · · · vn, how to encode at-least-one using direct encoding? How
about at-most-one?

(7) Given clauses Ci and Cj which contained in a CNF ∆ where P ∈ Ci and ¬P ∈ Cj .
Write down the resolvent that obtained by resolving Ci and Cj .

(8) Given a CNF ∆ = { {A,B,¬C}, {¬A,D}, {B,C,D} } , give the result condition-
ing on literal C and ¬C.

2.3.2 Complete Algorithm

Problem 7: Complete Algorithm

(1) Give the result of exsitentially quantifying variable B from the CNF

∆ = { {¬A,B}, {¬B,C} }.

(2) What does DP algorithm do? To better understanding the DP algorithm (dirtional
resolution), given the variables order C,B,A,D,E, using bucket elimination to process
CNF:

∆ = { {¬A,B}, {¬A,C}, {¬B,D}, {¬C,¬D}, {A,¬C,E} },

5



Also, try varibles order E,A,B,C,D, see how order affects the result.

2.3.3 Davis-Putnam-Logemann-Loveland(DPLL)

DPLL is one of the typical Branch-and-bound algorithm, you should have good comprehension of
what happens under the hood.

2.3.4 Explore

Problem 8: Self-study

(a) Check DIMACs format, know what does each line mean.

(b) Try to find well-known SAT solver, list them below.

(c) Try to use one of them to solve the problem you wrote above in the previous subsection.

2.3.5 Coding Practice

Implemented in C/C++
Try to build a SAT solver yourself, the most simple version can be built by implementing exact
simulation, which enumerates all the possible combination of the variables you listed above in the
TT section.
1. You need a parser to DIMACS format.
2. Implement your solver.
3. Compare the time cost with any of the solver you find on internet.
4. Try to boost the efficiency of the solver using the method you have learnt during the class.

2.4 Binary Decision Diagram(BDD)

Binary Decision Diagram(BDD) is another clear expression of the boolean function, it is a powerful
expression when modified to reduced and ordered.

6



Problem 9: BDD & ROBDD

(a) What is BDD? Draw a BDD based on the TT you draw in the TT section.

(b) Write down the definition(math formula) of Shanno expression, compare the definition
and the BDD you draw, can you explain the definition based on the BDD?

(c) So based on the previous question, if you are using simple MUXes to implement this
whole BDD, can you show one upper bound of how many MUXes on the longest path?

• This question helps understand Theorem 1, Bounds on Essential Critical Paths,
THEORY OF EQUIOPTIMIZABLE ARRIVAL PATTERNS in Amarú et al.
(2017).

(d) Is BDD canonical? If not, give an example.

(e) When reduce a BDD, list all the three rules.

(f) Is ROBDD canonical?

2.5 And-Inverter-Graph(AIG)

And-Inverter Graph(AIG) is one of the core structures in ABC and mocturtle, SOTA optimization
method such as rewrite, refactor, balance and resubstitution are all implemented based on AIG.

Problem 10: AIG format and representation

(a) Search for the standard AIG format.
Check Prof. Armin Biere’s report Biere (2007) on AIG format, there’s also a new
version Biere et al. (2011), but with only added up features, so pay attention to the old
one.

(b) What is structure hashing?

(c) After applying structure hashing, do you think there are still two nodes with same
fanin? If not, do you think there are still two node with same functionality? If so, why?

(d) Is AIG canonical? Why? If not, give an example.

7



2.6 Majority-Inverter-Graph(MIG)

Majority graph is a novel representation, proviodes much more compact form than AIG, a direct
overview of the representation of a case f51m from MCNC benchmark could be seem here Amarù
(2014). The application was originally for emerging technology, we won’t discuss here, however, in
logic optimization perspective, it could also be used as a tie breaker.

Problem 11: MIG representation

(a) Give definition of n-input(n is odd) majority function.

(b) As for an 3-input Majority gate support by a, b and c, see what would happen if the
last variable c is equal to 0 or 1, what does the majority gate substitute to?

(c) Based on the previous question, give the set relationship of the following homogeneous
GIG(graph-inverter graph):
MIG,AOIG(AND/OR/INV) and AIG(AND/INV).

2.7 XOR-And-Grpah(XAG)

2.8 XOR-Majority-Graph(XMG)

2.9 Basic Concept

2.9.1 Transitive Fanin(TFI) Cone & Transitive Fanout(TFO) Cone

This is a basic concept but barely used directly, try to relate this to support variables from functional
perspective.

• Also, try to think does it correct to define all the TFI leaves as support variables.

2.9.2 Nodes

There’s not too much about nodes here instead of different types of representation or expression
of the network holds different types of nodes. However, some basic concept such as dag-node,
tree-node, will help you understand the concepts in cut(specifically factored cut) and Factored
Form Literal Count(FFLC) under AIG context(You don’t need to know about this now, we will
discuss about it later.).

Problem 12: Nodes-type

(a) Search for the definition of dag-node and tree-node. Draw a simple AIG and give
example of both type of nodes.

8



• This helps understanding the concept of factored cuts in Mishchenko et al. (2006)
and FFLC in Tempia Calvino et al. (2023).

2.9.3 Cut

Cut method is used regularly in most of the optimization in logic synthesis since global optimization
is hard and local based method is needed. Have a clear understanding of the following concepts
help comprehend most of the SOTA research.

Problem 13: Cut in general

(a) Give the definition of K-feasible cut and give an example on an AIG graph with K =
4.

(b) How many 4-feasible cut can you find on the AIG you provided?

(c) If you want to find a better candidate that could replace this cut, in a functional
perspective, how many candidates could you find for a 4 variable function?

(d) If the amount of function is too large, can you suppress it?

• This question is related to function classes, if you are interested, read Huang et al.
(2013).

(e) Can you filter out some of the cuts you provided from the previous question due to a
threshold/criteria/cost function? Give an example.

• This question helps understand the concept of priority cut, if you are interested,
check Mishchenko et al. (2007).

• There’s another cut called reconvergence-driven cut, it tries to maximize the num-
ber of condition such that fanouts from the same nodes meets again. Try to give
a definition of reconvergence-driven cut, and compare your definition with the one
in Mishchenko and Brayton (2006). In addition, think why this is needed? And do
you think this cut will always contain a reconvergence condition or just increase
the possiblity of containing one?

(f) There are actually two ways to generate cuts, one is bottom-up, which is the most
common one we see, another one is top-down(This two abstract definition is from
Testa (2020).), which is the one we mentioned in node concept, called factored cuts.
Try to think about what is the difference and the pros and cons of each method.

9



2.9.4 Maximum Fanout Free Cone(MFFC)

MFFC is essential, every time you have the chance to remove the pivot node, it allows you to
remove the MFFC of the pivot.

Problem 14: MFFC

(a) Give the definition of MFFC by selecting nodes in an example aig graph.
You could try to use command print mffc in ABC to check if you have selected the
correct region.

• Based on the definition of the MFFC, can you provide a definition on Maximum
Fanout Free Window(MFFW)? Check Zhu et al. (2023) and see if you are correct.

2.10 Window

Window is essential in don’t care based optimization.

Problem 15: Window

a Try to draw one window in an AIG graph and give sedu-code on an algorithm that you
would organize to automatically select the window in an AIG.

10



References

Amarú, L., Soeken, M., Vuillod, P., Luo, J., Mishchenko, A., Gaillardon, P.-E., Olson, J., Brayton,
R., and De Micheli, G. (2017). Enabling exact delay synthesis. In Proceedings of the 36th
International Conference on Computer-Aided Design, ICCAD ’17, page 352–359. IEEE Press.

Amarù, L. (2014). Majority-inverter graph (mig). https://www.epfl.ch/labs/lsi/

page-102566-en-html/mig/. Accessed: 2024-10-22.

Amarù, L., Gaillardon, P.-E., and De Micheli, G. (2015). The epfl combinational benchmark suite.

Biere, A. (2007). The aiger and-inverter graph (aig) format version 20071012.

Biere, A., Biere, A., Heule, M., van Maaren, H., and Walsh, T. (2009). Handbook of Satisfiability:
Volume 185 Frontiers in Artificial Intelligence and Applications. IOS Press, NLD.

Biere, A., Heljanko, K., and Wieringa, S. (2011). AIGER 1.9 and beyond. Technical Report 11/2,
Institute for Formal Models and Verification, Johannes Kepler University, Altenbergerstr. 69,
4040 Linz, Austria.

Bradley, A. R. and Manna, Z. (2007). The Calculus of Computation: Decision Procedures with
Applications to Verification. Springer-Verlag, Berlin, Heidelberg.

Huang, Z., Wang, L., Nasikovskiy, Y., and Mishchenko, A. (2013). Fast boolean matching based on
npn classification. In 2013 International Conference on Field-Programmable Technology (FPT),
pages 310–313.

Mishchenko, A. and Brayton, R. K. (2006). Scalable logic synthesis using a simple circuit structure.

Mishchenko, A., Chatterjee, S., and Brayton, R. (2006). Improvements to technology mapping
for lut-based fpgas. In Proceedings of the 2006 ACM/SIGDA 14th International Symposium on
Field Programmable Gate Arrays, FPGA ’06, page 41–49, New York, NY, USA. Association for
Computing Machinery.

Mishchenko, A., Cho, S., Chatterjee, S., and Brayton, R. (2007). Combinational and sequential
mapping with priority cuts. In Proceedings of the 2007 IEEE/ACM International Conference on
Computer-Aided Design, ICCAD ’07, page 354–361. IEEE Press.

Tempia Calvino, A., Mishchenko, A., Schmit, H., Mahintorabi, E., Xu, X., and De Micheli, G.
(2023). Improving standard-cell design flow using factored form optimization.

Testa, E. (2020). Data Structures and Algorithms for Logic Synthesis in Advanced Technologies.
PhD thesis, EPFL, Lausanne.

Wang, L.-T., Chang, Y.-W., and Cheng, K.-T. T. (2009). Electronic Design Automation: Synthesis,
Verification, and Test. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Wolf, C. (2024). Yosys open synthesis suite.

Zhu, X., Tang, R., Chen, L., Li, X., Huang, X., Yuan, M., Sheng, W., and Xu, J. (2023). A database
dependent framework for k-input maximum fanout-free window rewriting. In DAC, pages 1–6.

11

https://www.epfl.ch/labs/lsi/page-102566-en-html/mig/
https://www.epfl.ch/labs/lsi/page-102566-en-html/mig/

	Introduction
	Concepts
	Explore

	Representations of Logic Functions
	Truth table
	Direct view
	Coding Practice

	SOP/DNF & POS/CNF
	Explore

	CNF & SAT solver
	SAT Basics
	Complete Algorithm
	Davis-Putnam-Logemann-Loveland(DPLL)
	Explore
	Coding Practice

	Binary Decision Diagram(BDD)
	And-Inverter-Graph(AIG)
	Majority-Inverter-Graph(MIG)
	XOR-And-Grpah(XAG)
	XOR-Majority-Graph(XMG)
	Basic Concept
	Transitive Fanin(TFI) Cone & Transitive Fanout(TFO) Cone
	Nodes
	Cut
	Maximum Fanout Free Cone(MFFC)

	Window


